An O(1/k) Convergence Rate for the Variable Stepsize Bregman Operator Splitting Algorithm

نویسندگان

  • William W. Hager
  • Maryam Yashtini
  • Hongchao Zhang
چکیده

Abstract. An earlier paper proved the convergence of a variable stepsize Bregman operator splitting algorithm (BOSVS) for minimizing φ(Bu) + H(u) where H and φ are convex functions, and φ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence rate of BOSVS is analyzed. When H(u) = ‖Au − f‖2 where A is a matrix, it is shown that for an ergodic approximation uk obtained by averaging k BOSVS iterates, the error in the objective value φ(Buk)+H(uk) is O(1/k). When the optimization problem has a unique solution u, we obtain the estimate ‖uk − u∗‖ = O(1/ √ k). The theoretical analysis is compared to observed convergence rates for partially parallel magnetic resonance image reconstruction problems where A is a large dense ill conditioned matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An $\mathcal O(1/{k})$ Convergence Rate for the Variable Stepsize Bregman Operator Splitting Algorithm

An earlier paper proved the convergence of a variable stepsize Bregman operator splitting algorithm (BOSVS) for minimizing φ(Bu) + H(u), where H and φ are convex functions, and φ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence rate of BOSVS is analyzed. W...

متن کامل

Accelerated Bregman Operator Splitting with Backtracking

This paper develops two accelerated Bregman Operator Splitting (BOS) algorithms with backtracking for solving regularized large-scale linear inverse problems, where the regularization term may not be smooth. The first algorithm improves the rate of convergence for BOSVS [5] in terms of the smooth component in the objective function by incorporating Nesterov’s multi-step acceleration scheme unde...

متن کامل

Bregman operator splitting with variable stepsize for total variation image reconstruction

This paper develops a Bregman operator splitting algorithm with variable stepsize (BOSVS) for solving problems of the form min{φ(Bu)+ 1/2‖Au− f ‖2}, where φ may be nonsmooth. The original Bregman Operator Splitting (BOS) algorithm employed a fixed stepsize, while BOSVS uses a line search to achieve better efficiency. These schemes are applicable to total variation (TV)-based image reconstructio...

متن کامل

Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage

We examine relations between popular variational methods in image processing and classical operator splitting methods in convex analysis. We focus on a gradient descent reprojection algorithm for image denoising and the recently proposed Split Bregman and alternating Split Bregman methods. By identifying the latter with the so-called DouglasRachford splitting algorithm we can guarantee its conv...

متن کامل

On convergence rate of the Douglas-Rachford operator splitting method

This note provides a simple proof on a O(1/k) convergence rate for the DouglasRachford operator splitting method where k denotes the iteration counter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016